S3 Text. Proof for concavity of $pl(\pi)$ First, we prove that, for fixed ϵ , the function $h(\pi) = \log \left\{ \sum_{g=0,1,2} P_{\epsilon}(R|T,g) P_{\pi}(g) \right\}$ is concave. Under HWE, we write $h(\pi) = \log \left\{ a_0(1-\pi)^2 + 2a_1\pi(1-\pi) + a_2\pi^2 \right\}$, where $a_0 = \epsilon^R(1-\epsilon)^{T-R}$, $a_1 = 0.5^T$, and $a_2 = \epsilon^{T-R}(1-\epsilon)^R$. The second derivative of $h(\pi)$ is $$h''(\pi) = -\frac{2\{(a_0 - 2a_1 + a_2)\pi + (a_1 - a_0)\}^2 + 2(a_1^2 - a_0 a_2)}{\{a_0(1 - \pi)^2 + 2a_1\pi(1 - \pi) + a_2\pi^2\}^2}.$$ Because $a_0a_2 = {\{\epsilon(1-\epsilon)\}}^T \le 0.25^T = a_1^2$, we obtain that $h''(\pi) \le 0$ and thus $h(\pi)$ is a concave function of π . Because the sum of concave functions are still concave, $\log L_{\rm S}(\pi, \epsilon)$ is concave in π for fixed ϵ . Because taking maximum of ϵ maintains the concavity [1], $pl(\pi)$ is also concave. 1. Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004.